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Validation of a method that uses a genetic neural network with electrostatic and steric similarity
matrices (SM/GNN) to obtain quantitative structure-activity relationships (QSARs) is
performed with eight data sets. Biological and physicochemical properties from a broad range
of chemical classes are correlated and predicted using this technique. Quantitatively the results
compare favorably with the benchmarks obtained by a number of well-established QSAR
methods; qualitatively the models are consistent with the published descriptions on the relative
contribution of steric and electrostatic factors. The results demonstrate the general utility of
this method in deriving QSARs. The implication of the importance of molecular alignment
and possible methodological improvements are discussed.

I. Introduction

In the companion paper1 we have described an ap-
proach for using a genetic neural network (GNN)2,3 to
construct quantitative structure-activity relationships
(QSARs) from molecular similarity matrices (SMs). We
obtained highly predictive statistical models for the well-
studied corticosteroid-binding globulin (CBG)-binding
steroid data set. Since the steroid data set is somewhat
limited, the aim of this paper is to provide an extended
test with several additional data sets.
We use five biological data sets that have been

extensively studied with established QSAR methods so
that the results can be compared with published work.
In addition, we apply the method to a set of glycogen
phosphorylase (GP) inhibitors. GP is a large enzyme
that plays a regulatory role in glycogen metabolism. As
a potential therapeutic target relating to the treatment
of diabetes, there has been considerable interest in
designing a more potent GP inhibitor than R-D-glucose,
the physiological regulator.4 Numerous crystallographic
studies,5-9 kinetic binding experiments,4,9-11 and 3D
QSAR investigations4,12 of GP-ligand complexes have
been made. For this study, Johnson and co-workers
have gladly made a set of GP-ligand cocrystallized
structures available to us.
Also we use the SM/GNN method to examine physi-

cochemical properties, specifically the Hammett con-
stants of substituted benzoic acids and the pKa values
of imidazoles. These two properties are commonly used
as standard 2D QSAR parameters describing electro-
static interactions between a drug and its receptor. 3D
QSAR methods, like comparative molecular field analy-
sis (CoMFA), generally rely on an electrostatic field to
provide such information. A number of studies have
been made to examine the ability of the 3D methods to
reproduce these physicochemical properties.13-17 A good
fit of 2D parameters using 3D methods would verify the
mutual consistency of their electrostatic descriptions.

II. Method

Data Sets. Eight data sets were examined in this study.
Six of these were concerned with biological activity or binding
data and two with physicochemical properties. The six
biological data sets are (a) 73 polyhalogenated aromatic
compounds that bind to the cytosolic aromatic hydrocarbon
(Ah) receptor (Table 1a);18,19 (b) 47 1-(substituted benyzl)-
imidazole-2(3H)-thiones with inhibitory activities on dopamine
â-hydroxylase (DâH; Table 1b);20,21 (c) 43 â-carboline, pyrido-
diindole, and CGS inverse agonists and antagonists of benzo-
diazepine receptor (BzR; Table 1c);15,17,22-24 (d) 60 structurally
diverse inhibitors of acetylcholinesterase (AChE) that have
recently been studied with a new CoMFA/q2-GRS approach
(Table 1d);25 (e) 37 bisamidines with potency against Leish-
mania mexicana amazonensis26 (Table 1e); and (f) 30 GP
inhibitors whose bound X-ray coordinates with the enzyme
have been determined (Table 1f).4,9,10,12 The two physicochem-
ical data sets are (g) 72 substituted benzoic acids with
Hammett constant data (Table 1g)14-17 and (h) 16 imidazoles
with pKa data (Table 1h).13,15,17

The compounds in data series a, c, g, and h were manually
built using the 3D sketcher facility in the Cerius2 program,27
and the structures were energy minimized using the default
force field.28 The structures of DâH inhibitors in series b were
taken from an example file in a Cerius2 release. The coordi-
nates of the AChE inhibitors in series d were provided by Cho
et al.25 and those of the bisamidines in series e by Montanari
et al.26 The GP inhibitors coordinates in series f were extracted
from the X-ray cocrystallization structures.4,10

Generation of Similarity Indices. The generation of the
molecular fields was done as described in the companion
paper.1 AM1 Mulliken charges were obtained using the
MOPAC program29 (version 6) with the default setting. The
electrostatic similarity index between two molecules was
computed with the Hodgkin formula30 (eq 1) using electrostatic
potentials that were calculated at regular grid points. A
rectilinear grid, whose size had a 6-Å extension beyond all
atomic coordinates and a regular grid spacing of 2 Å, was used.
A vacuum dielectric (ε ) 1.0) was used for the computation of
Coulombic electrostatic potentials. A truncation cutoff of (5
kcal/mol was applied to the potentials at all grid points, except
for the series d and e where a higher value ((100 kcal/mol)
was necessary to make the similarity index more discriminat-
ing for molecules that had net positive charges.
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Table 1

(a) Structure and Affinity Data for the Ah Data Set of Series a

no. structure R pEC50 no. structure R pEC50

1 A 2,3,7,8-Cl4 8.000 38 B 2,3,4,8-Cl4 6.699
2 A 1,2,3,7,8-Cl5 7.102 39 B 2,3,7,8-Cl4 7.387
3 A 2,3,6,7-Cl4 6.796 40 B 1,2,4,8-Cl4 5.000
4 A 2,3,6-Cl3 6.658 41 B 1,2,4,6,7-Cl5 7.169
5 A 1,2,3,4,7,8-Cl6 6.553 42 B 1,2,4,7,9-Cl5 4.699
6 A 1,3,7,8-Cl4 6.102 43 B 1,2,3,4,8-Cl5 6.921
7 A 1,2,4,7,8-Cl5 5.959 44 B 1,2,3,7,8-Cl5 7.128
8 A 1,2,3,4-Cl4 5.886 45 B 1,2,4,7,8-Cl5 5.886
9 A 2,3,7-Cl3 7.149 46 B 2,3,4,7,8-Cl5 7.824
10 A 2,8-Cl2 5.495 47 B 1,2,3,4,7,8-Cl6 6.638
11 A 1,2,3,4,7-Cl5 5.194 48 B 1,2,3,6,7,8-Cl6 6.569
12 A 1,2,4-Cl3 4.886 49 B 1,2,4,6,7,8-Cl6 5.081
13 A 1,2,3,4,6,7,8,9-Cl8 5.000 50 B 2,3,4,6,7,8-Cl6 7.328
14 A 1-Cl 4.000 51 B 2,3,6,8-Cl4 6.658
15 A 2,3,7,8-Br4 8.824 52 B 1,2,3,6-Cl4 6.456
16 A 2,3-Br2, 7,8-Cl2 8.830 53 B 1,2,3,7-Cl4 6.959
17 A 2,8-Br2, 3,7-Cl2 9.350 54 B 1,3,4,7,8-Cl5 6.699
18 A 2-Br, 3,7,8-Cl3 7.939 55 B 2,3,4,7,9-Cl5 6.699
19a A 1,3,7,9-Br4 7.032 56 B 1,2,3,7,9-Cl5 6.398
20 A 1,3,7,8-Br4 8.699 57 B 3.000
21 A 1,2,4,7,8-Br5 7.770 58 B 2,3,4,7-Cl4 7.602
22 A 1,2,3,7,8-Br5 8.180 59 B 1,2,4,6,8-Cl5 5.509
23 A 2,3,7-Br3 8.932 60 C 3,3′,4,4′-Cl4 6.149
24 A 2,7-Br2 7.810 61 C 3,4,4′,5-Cl4 4.553
25 A 2-Br 6.530 62 C 3,3′,4,4′,5-Cl5 6.886
26 B 2-Cl 3.553 63 C 2′,3,4,4′,5-Cl5 4.854
27 B 3-Cl 4.377 64 C 2,3,3′,4,4′-Cl5 5.367
28 B 4-Cl 3.000 65 C 2,3′,4,4′,5-Cl5 5.041
29 B 2,3-Cl2 5.326 66 C 2,3,4,4′,5-Cl5 5.387
30 B 2,6-Cl2 3.609 67b C 2,3,3′,4,4′,5-Cl6 5.149
31 B 2,8-Cl2 3.590 68 C 2,3′,4,4′,5,5′-Cl6 4.796
32 B 1,3,6-Cl3 5.357 69b C 2,3,3′,4,4′,5′-Cl6 5.301
33 B 1,3,8-Cl3 4.071 70 C 2,2′,4,4′-Cl4 3.886
34 B 2,3,4-Cl3 4.721 71 C 2,2′,4,4′,5,5′-Cl6 4.102
35 B 2,3,8-Cl3 6.000 72 C 2,3,4,5-Cl4 3.854
36 B 2,6,7-Cl3 6.347 73 C 2,3′,4,4′,5′,6-Cl6 4.004
37 B 2,3,4,6-Cl4 6.456

(b) Structure and Affinity Data for the DâH Data Set of Series b

no. R pIC50 no. R pIC50 no. R pIC50

1 2,6-(CH3)2 3.00 17 3-NO2, 4-OCH3 3.45 33 H 4.48
2 2,6-Cl2 3.15 18 4-OCH3 3.69 34 3-NO2, 4-OH 4.51
3 2,6-(OCH3)2 3.30 19 3-OCH3 3.80 35 3,4-Cl2 4.55
4 2-Cl 3.45 20 3-OH 3.83 36 2,4-Cl2 4.77
5 2-CH3 3.47 21c 3-CF3, 4-OH 3.92 37 3-Br, 4-OH 4.92
6 3,4-(OCH3)2 3.47 22 2,4,6-Cl3 3.99 38 3-Cl 4.92
7 4-CF3 3.70 23 2,5-Cl2 4.01 39 3-F 5.25
8 3-CF3, 4-OCH3 3.76 24 4-Cl 4.02 40 4-OH 5.59
9 2,6-Cl2, 4-OCH3 3.81 25 2,6-Cl2, 4-OH 4.12 41 3,5-Cl2 5.62
10 4-CH3 3.83 26 2,3,5,6-F4, 4-OH 4.21 42 3,4-(OH)2 5.66
11 4-Br 3.94 27 4-NO2 4.28 43 3-Cl, 4-OH 5.70
12 3-Br, 4-OCH3 4.08 28 2,3-Cl2 4.28 44 3-F, 4-OH 5.82
13 3-F, 4-OCH3 4.13 29 3-CH3, 4-OH 4.31 45 3,5-F2 5.92
14 2-OCH3 4.13 30 4-F 4.33 46 3,5-Cl2, 4-OH 6.17
15 3-CH3, 4-OCH3 4.16 31 3,5-Cl2, 4-OCH3 4.33 47 3,5-F2, 4-OH 7.13
16 2-OH 3.24 32 3,5-F2, 4-OCH3 4.44
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Table 1 (Continued)

(c) Structure and Affinity Data for the BzR Data Set of Series cd

no. structure R1 R2 R3 R4 R5 R6 pIC50

1 A CO2CH3 H 8.30
2 A CO2CH2CH3 H 8.30
3 A OCH2CH3 H 7.62
4 A OCH(CH3)2 H 6.29
5 A OCH2CH2CH3CH3 H 7.01
6 A OCH3 H 6.91
7 A OCH2CH2CH3 H 7.96
8 A COCH2CH2CH3 H 7.64
9 A CH2CH2CH2CH3 H 6.64
10 A H H 5.79
11 A CO2C(CH3)3 H 8.00
12 A Cl H 7.35
13 A NO2 H 6.90
14 A CO2CH2C(CH3)3 H 6.12
15 A CO2CH3 CH2CH3 5.12
16 A H CH2CH3 3.60
17 A H CH3 4.91
18 B C(dO) 4.59
19 B C(dNOH) 5.24
20 B O 5.07
21 B CH2 6.17
22 B C(dO)N(H) 5.62
23 B S 5.77
24 C H H H H H H 8.40
25 C H H CH3 H H H 7.17
26 C H H H CH3 H H 8.10
27 C H H H H CH3 H 6.65
28 C H H H H H CH3 5.16
29 C CH3 H H H H H 5.93
30 C H CH3 H H H H 6.80
31 C CH3 CH3 H H H H 5.71
32 C H H H H H OCH3 6.60
33 C H H H H H Cl 6.15
34 D 5.71
35 E H 9.40
36 E Cl 9.22
37 E OCH3 10.00
38 A OCH(CH3)CH2CH3 H 6.33
39 A OCH2CH(CH3)2 H 7.03
40 A OCH2CH2CH(CH3)2 H 6.27
41 A OCH2C(CH3)3 H 7.02
42 A OCH2C6H5 H 6.00
43 A COC(CH3)3 H 6.45

(d) Structure and Affinity Data for the AChE Data Set of Series d

no. structure R pIC50 no. structure R pIC50

1 A 4-NHCOCH3-C6H4 2.684 31 C 2-CH3, 5-OH 5.549
2 A 4-NH2-C6H4 3.161 32 C 3-OH, 4-CH3 5.507
3 A 4-Cl-C6H4 2.090 33 C 3-OCOCH3 5.521
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Table 1 (Continued)

no. structure R pIC50 no. structure R pIC50

4 A 4-CN-C6H4 1.936 34 C 2-CH3, 3-OCOCH3 4.389
5 A 4-NO2-C6H4 2.291 35 C 2-CH3, 5-OCOCH3 5.273
6 A H 2.754 36 C 3-OCOCH3, 4-CH3 6.181
7 A CH3 2.762 37 C 3-OCOCH2CH3 5.224
8 A C(CH3)3 2.431 38 C 2-CH3, 3-OCOCH2CH3 3.123
9 A CF3 2.417 39 C 2-CH3, 5-OCOCH2CH3 4.161
10 B CH2OH 2.521 40 C 3-OCOCH2CH3, 4-CH3 5.424
11 B CH2Cl 2.622 41 C 3-OCH3 3.224
12 B CH2SH 3.357 42 C 2-CH3, 3-OCH3 3.622
13 B CH2OCH2CH3 2.936 43 C 2-CH3, 5-OCH3 3.462
14 B CH2SCH2CH3 2.821 44 C 3-OCH3, 4-CH3 3.912
15 B CH2OCOCH2CH2CH3 3.640 45 D CONHCH3 7.244
16 B CH2SCOCH2CH2CH3 3.900 46 D CONH(CH2)7CH3 6.959
17 B CH2CH2COCH3 4.072 47 D CONH(CH2)3CH3 6.818
18 B CHdCH2 2.535 48 D CONHCH2C6H5 6.337
19 B CH2CHdCH2 3.072 49 D CONHC6H5 6.456
20 B CH2CH2CHdCH2 2.947 50 E CONHCH3 7.469
21 B CH2CH2Br 4.056 51 D CONH(4-OCH3-C6H4) 5.770
22 B CH2CH2CH2Br 3.224 52 D CON(CH3)2 6.013
23 B CH2CH2CH2I 3.327 53 D CONH(4-Cl-C6H4) 5.745
24 B CH2CH2CH2CH2Br 3.272 54 D CON(CH3)CONHCH2C6H5 5.201
25 B CH2CH2CH2CH2CH3 3.088 55 D CON(CH2CH3)2 4.398
26 C 3-NO2 3.202 56 D CONHCH(CH3)2 4.456
27 C 3-NHCOCH3 3.000 57 F 6.108
28 C 3-NH3

+ 3.717 58 C 3-OCON(CH3)2 7.041
29 C 3-OH 6.012 59 G 7.119
30 C 2-CH3, 3-OH 3.850 60 H 8.097

(e) Structure and Affinity Data for the Bisamidine Data Set of Series e

no. n R1 R2 R3 R4 pIC50 no. n R1 R2 R3 R4 pIC50

1 2 O H X H 1.801 20 5 O Cl X H 3.153
2 3 O H X H 3.070 21 5 O Br X H 3.169
3 4 O H X H 2.799 22 3 NH H X H 3.163
4 5 O H X H 3.086 23 4 NH H X H 3.173
5 6 O H X H 3.402 24 5 NH H X H 3.253
6 3 O H H X 2.215 25 6 NH H X H 3.539
7 4 O H H X 2.265 26 3 NH NO2 X H 2.316
8 5 O H H X 2.671 27 5 NH NO2 X H 2.947
9 6 O H H X 2.985 28 2 NH NH2 X H 1.581
10 2 O NO2 X H 1.301 29 4 NH NH2 X H 2.104
11 4 O NO2 X H 2.252 30 5 NH NH2 X H 2.936
12 5 O NO2 X H 2.700 31 6 NH NH2 X H 3.004
13 2 O NH2 X H 1.646 32 3 O H Y H 2.751
14 3 O NH2 X H 2.456 33 4 O H Y H 2.567
15 4 O NH2 X H 2.121 34 5 O H Y H 2.765
16 3 O OCH3 X H 2.748 35 3 O OCH3 Y H 2.646
17 4 O OCH3 X H 1.998 36 4 O OCH3 Y H 2.193
18 5 O OCH3 X H 2.518 37 5 O OCH3 Y H 2.394
19 4 O Cl X H 2.876

(f) Structure and Affinity Data for the GP Data Set of Series f

no. structure R pKi no. structure R pKi

1 A R-CONHCH3 1.435 16 A â-CONH-cyclopropyl 2.886
2 A â-SCH2CONH2 1.676 17 A â-NHCOCH2NHCOCH3 3.004
3 A â-CH2CONH-2,4-F2-C6H3 1.724 18 A â-CONH2 3.357
4 A R-CONHC2H5OH 1.772 19 A â-CONHNH2 3.398
5 A â-CH2NH3+ 1.775 20 A R-CONH2 3.432
6 A â-O-(1-6)-D-glucose 1.788 21 A â-NHCOCH2NH2 3.432
7 A â-CH2N3 1.818 22 A â-CONHCH3 3.796
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For the shape comparison, a grid with an extension of 2 Å
beyond the molecular boundary was constructed. A regular
grid spacing of 0.5 Å was used. The shape index was based
on the Meyer formula31 (eq 2):

where U is the number of grid points enclosed by the volume
that was the union of the two molecules being compared and
TA and TB are the number of grid points inside their individual
volumes.

Genetic Neural Network. A data set containing N
training compounds leads to N × N electrostatic and shape
SMs. GNN simulations were performed on each of the SMs
for every data set. For the six biological series, an additional
GNN run was done on theN× 2N combined matrix containing
the two properties. In the companion study, we have shown
that the number of descriptors (n) used in a GNN model is an
important parameter.1 In the current work, we use a proce-
dure similar to that employed with CoMFA to find the model
with optimal predictivity. We applied GNN simulations on
the same matrix using different values of n, ranging from 1
to a maximum of N/5. The optimal model is the one that gave
the smallest standard error (σ) in cross-validation predictions:

Table 1 (Continued)

no. structure R pKi no. structure R pKi

8 A R-CONH-4-OH-C6H4 2.252 23 D NH2 3.836
9 A â-CH2OSO2CH3 2.319 24 A â-NHCONH2 3.854
10 A â-SCH2CONHC6H5 2.444 25 A â-NHCOC3H7 4.027
11 A â-CONHNH2 2.523 26 C 4.229
12 A â-CO2CH3 2.553 27 A â-NHCOCH2Cl 4.347
13 B 2.699 28 A â-NHCOCH3 4.495
14 A â-CONHNHCH3 2.745 29 A R-CONH2, b-NHCO2CH3 4.796
15 A R-OH 2.770 30 D H 5.523

(g) Structure and Hammett Constant Data for the Benzoic Acids of Series ge

no. R σ no. R σ no. R σ

1 H 0.00 25 m-SO2CH3 0.60 49 p-SO2CH3 0.72
2 m-Br 0.39 26 p-Br 0.23 50 m-CHdCH2 0.05
3 m-CF3 0.43 27 p-CF3 0.54 51 m-CH2CN 0.16
4 m-CH3 -0.07 28 p-CH3 -0.17 52 m-CHO 0.35
5 m-Cl 0.37 29 p-Cl 0.23 53 m-CH2OCH3 0.02
6 m-CN 0.56 30 p-CN 0.66 54 m-COCH3 0.38
7 m-F 0.34 31 p-F 0.06 55 m-CONH2 0.28
8 m-I 0.35 32 p-I 0.18 56 m-NCS 0.48
9 m-NH2 -0.16 33 p-NH2 -0.66 57 m-NHCH3 -0.30
10 m-NO2 0.71 34 p-NO2 0.78 58 m-N(CH3)2 -0.15
11 m-OCF3 0.38 35 p-OCF3 0.35 59 m-OCOCH3 0.39
12 m-OH 0.12 36 p-OH -0.37 60 m-SCN 0.41
13 m-OCH3 0.12 37 p-OCH3 -0.27 61 m-SO2NH2 0.46
14 m-SH 0.25 38 p-SH 0.15 62 p-CHdCH2 -0.02
15 m-SCH3 0.15 39 p-SCH3 0.00 63 p-CH2CN 0.01
16 m-SCF3 0.40 40 p-SCF3 0.50 64 p-CHO 0.42
17 m-C(CH3)3 -0.10 41 p-C(CH3)3 -0.20 65 p-CH2OCH3 0.03
18 m-C2F5 0.47 42 p-C2F5 0.52 66 p-COCH3 0.50
19 m-CH2Br 0.12 43 p-CH2Br 0.14 67 p-CONH2 0.36
20 m-CH2Cl 0.11 44 p-CH2Cl 0.12 68 p-NCS 0.38
21 m-CH2I 0.10 45 p-CH2I 0.11 69 p-NHCH3 -0.84
22 m-C2H5 -0.07 46 p-C2H5 -0.15 70 p-N(CH3)2 -0.83
23 m-SO2CF3 0.79 47 p-SO2CF3 0.93 71 p-SCN 0.52
24 m-SO2F 0.80 48 p-SO2F 0.91 72 p-SO2NH2 0.57

(h) Structure and pKa Data for the Imidazoles of Series h

no. R1 R2 pKa no. R1 R2 pKa

1 CH3 Br 3.82 9 H F 2.40
2 CH3 F 2.30 10 H H 6.99
3 CH3 H 7.12 11 H CH3 7.86
4 CH3 NH2 8.54 12 H NH2 8.46
5 CH3 NO2 -0.48 13 H NO2 -0.81
6 H Br 3.79 14 H C6H5 6.48
7 H Cl 3.55 15 H 2-pyridyl 5.36
8 H C2H5 7.73 16 H SCH3 5.95

a Incorrect structure in Wagener et al.19 b Incorrect activity in Waller and McKinney18 and Wagener et al.19 c Incorrect structure in
the Cerius2 example file. d 1-37 training set; 38-43 test set. e 1-49 training set; 50-72 test set.
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where yi,observed is the observed property value and yi,predicted is
the predicted value from cross-validated prediction. This
formula is related to the standard deviation of the error of
predictions in the CoMFA PLS analysis,32 and it penalizes
models with a large number of descriptors. In this way,
simpler models that are marginally less predictive are pre-
ferred if the increase of predictivity in the more complex model
does not justify the higher associated risk of data overfitting.33-35

All neural networks used in this study had a configuration of
n-2-1.
The overall predictive quality of the GNN models was

determined by the use of a cross-validated r,2 which is
commonly referred to as q2 to distinguish from the conven-
tional Pearson correlation coefficient. It is defined as:

For the maximum possible correlation of the data, q2 takes
a value of 1. A zero value indicates that the predictions are
no better than those made randomly; i.e., all compounds were
predicted at the average observed output, yi,observed. A nega-
tive q2 value, which arises from anticorrelation, is possible.

III. Results
Predictions of Biological Activities. (a) Ah Data

Set. Waller and McKinney (WMcK) used the CoMFA
method to correlate a set of 78 polyhalogenated aromatic
compounds with their Ah receptor binding affinities.18
Their six-component PLS model yielded a q2 value of
0.72. In a recent study, Wagener et al. obtained an

excellent QSAR for the same data set.19 They computed
a 12-element autocorrelation vector (AV) that encoded
molecular surface properties for each of the compounds
and used them as input to a neural network (NN). The
AV/NN model gave a high q2 value of 0.83.
In a preliminary analysis of this work, we had

identified four duplicate entries in the data set used by
the two research groups (PCDF29-32 and PCDF35-
38 in Table 2 of WMcK are identical). These redundant
entries diminished the significance of cross-validation
since the estimated predictivity would almost certainly
be too large. For this reason, the four duplicates were
removed in this study. In addition, a comparison of the
data set with the original literature36-38 revealed several
discrepancies. The entry for PCDF14, whose pEC50
value was not reported in the cited sources, appeared
to be a compilation error. Also, the activities for PCB8
and PCB10 reported by both groups were incorrect. The
recompiled data set is shown in Table 1a, and it consists
of 25 dioxin, 34 furan, and 14 biphenyl derivatives.
Partly due to the symmetry of the parent compounds,
the alignment for these compounds was not well-defined
even for compounds within a given congeneric series.
In this study, we used the alignment procedure de-
scribed by WMcK.
The 73 × 73 SMs for electrostatic and shape proper-

ties were obtained using the set of aligned structures.
Application of the GNN algorithm gave q2 values of 0.72
and 0.85 for the electrostatic and shape matrices,
respectively. This result was in agreement with the
CoMFA study, which reported that the steric influence
was more important. The GNNmodel derived from the
combined similarity matrix contained two electrostatic
and five shape descriptors. This composite model
showed no improvement in predictivity (q2 ) 0.85;
Figure 1a) relative to the previous GNNmodel obtained
directly from the shape matrix.

Figure 1. Plots of cross-validated activities against observed values for (a) 73 Ah compounds (series a) (dioxins are shown as
solid circles, furans as open triangles, and biphenyls as crosses), (b) 47 DâH inhibitors (series b), (c) 37 inverse agonists of BzR
(series c), (d) 60 AChE inhibitors (series d), (e) 37 bisamidines (series e), and (f) 30 GP inhibitors (series f). (g) Plot of cross-
validated and predicted Hammett constants against observed values for 72 benzoic acids (series g) (training compounds are shown
as solid circles and test compounds as open triangles). (h) Plot of cross-validated pKa against the observed values for 16 imidazoles
(series h).

σ )x∑
i)1

N

(yi,observed - yi,predicted)
2

N - n - 1
(3)

cross-validated r2 ≡ q2 ) 1 -

∑
i)1

N

(yi,observed - yi,predicted)
2

∑
i)1

N

(yi,observed - yi,observed)
2

(4)
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The SM/GNN results were significantly better than
the CoMFA statistics for this data set. This method also
performed marginally superior than the AV/NNmethod
that employed more descriptors for correlation. The
principal source of error in this study probably came
from the uncertainty of the alignment,18 which is a
major problem in the 3D QSAR methods that required
molecular superposition. In the absence of experimental
information of the ligand-receptor structures, the cur-
rent alignment or one that is based on an active
analogue approach39 seemed a reasonable starting point.
Nevertheless, other alternative alignments should also
be explored because they might lead to more predictive
models. In this regard, we are developing a GA-based
method that is used in conjunction with a similarity-
based approach to obtain molecular alignments.
(b) DâH Data Set. The set of 47 1-(substituted

benzyl)imidazole-2(3H)-thiones and their inhibitory ac-
tivity with DâH had been correlated by two different
QSAR approaches. Burke and Hopfinger performed
molecular shape analysis (MSA) on this set of com-
pounds.20 They formulated a six-descriptor regression
equation involving linear and quadratic variables en-
coding steric, electrostatic, and hydrophobic character-
istics of the ligands (eq 5):

where V0 is a 3D measure denoting the common overlap
steric volume against the most active compound, Q3,4,5
is the sum of partial atomic charges on atoms 3, 4, and
5, Q6 is the partial atomic charge on atom 6, π0 is the
molecular lipophilicity, and π4 is the water/octanol
fragment constant of the 4-substituent. Because cross-
validated statistics were not reported, we recalculated
this regression QSAR based on the published descriptor
values and obtained a value of 0.76 for q.2
Recently Hahn and Rogers studied the same set of

compounds with another 3D QSARmethod, the receptor
surface model (RSM).21 They built a regression equa-
tion based on two thermodynamic variables (eq 6):

where Einteract is the sum of van der Waals and electro-
static interaction energies between the inhibitor and the
pseudoreceptor and Einside is the intramolecular energy
of the inhibitor within the receptor environment. The
broken brackets (〈 〉) denote a spline function which
returns the value of the argument if it is positive, and
0 otherwise. The use of splines for the two energy terms
is a computationally inexpensive way to introduce
nonlinearity in the equation. This QSAR model yielded
a q2 of 0.79.
We utilized the set of DâH inhibitors that was

distributed as an example for the RSM module21,40 in
the Cerius2 package. The prealigned coordinates were
used without modification to obtain direct comparison
with the RSM result. Application of GNN on individual
similarity matrices led to a four-descriptor electrostatic
model (q2 ) 0.64) and a six-descriptor shape model (q2
) 0.76). GNN on the combined matrix led to the
selection of one electrostatic and three shape similarity

descriptors. This mixed model, despite the use of fewer
descriptors, was marginally more predictive (q2 ) 0.77;
Figure 1b) than the shape model. Overall, the predic-
tive statistics obtained by SM/GNN were comparable
to the results of the MSA or RSM methods.
Unlike the Ah data set, the molecular alignment for

the DâH inhibitors was well-defined though the indi-
vidual conformations used for the similarity calculation
could be ambiguous. Specifically, an asymmetric sub-
stitution pattern on the phenyl ring might result in two
rotamers that were similar in conformational energy.
In a forthcoming study, we will describe an alternative
set of conformations that results in a superior QSAR
model.
(c) BzR Data Set. Inverse agonists and antagonists

of the benzodiazepine receptor (BzR) have been the
subject for a number of 3D QSAR investigations.15,17,22-24

The current data set was first studied by Allen et al.,
who reported a CoMFA model involving 37 compounds
(1-37).22 A few years later, the same research group
refined their CoMFA model by incorporating a robust
variable selection routine, GOLPE.23 They tested both
the original and the improved QSAR models with six
additional analogues (38-43). In addition, Kroemer et
al. used this data set to study the effect of electrostatic
parameters on the quality of CoMFA models.24 Good
et al. performed PLS on similarity matrices derived from
this data set and obtained some predictive QSARs.15
Recently, the same set of compounds was examined in
the first application of the comparative molecular mo-
ments analysis (CoMMA).17 The key results in the
literature are summarized in Table 2c.
The coordinates for these compounds were con-

structed using the Cerius2 program as described in
Method. The compounds were superimposed using the
alignment rule specified in the original CoMFA study.22
GNN applications on individual similarity matrices
indicated that, in accordance with the CoMFA results,
the complement of shape between the ligand and its
receptor was the major determinant of binding (Table
2c). The electrostatic interactions appeared to play a
lesser role, though such description was needed to build
a QSAR model with optimal predictivity. The top-
ranking GNN model that was derived from the com-
bined matrix gave a q2 of 0.73 (Figure 1c), which was
significantly better than those obtained using conven-
tional CoMFA and SM/PLS (i.e., without GOLPE vari-
able selection) or CoMMA methods. Finally, as an
external test for the final QSAR, activity predictions
were made with six additional compounds reported by
Allen et al.23 The experimental and predicted pIC50
values of these compounds are listed in Table 3. The
rms prediction error was 0.3. Given that the range of
activity for the training set spanned 6.4 log units, the
predictions of the test compounds seemed very accurate.
The success of the use of GOLPE in conjunction with

the other methods has brought fresh insight on its
potential application to the current SM/GNN paradigm.
In certain way, GNN and GOLPE have a similar
philosophy. Both are feature selection routines that
eliminate some of the less relevant input data. This
contributes a better signal-to-noise and in general
improves the QSAR quality. The utility of GOLPE in
the preprocessing of the molecular fields is a promising
direction that will be explored in future work.

pIC50 ) -119.6V0 + 70.6V0
2 + 2.09Q3,4,5 - 4.63Q6 +

0.046π0
2 - 0.595π4 + 53.38 (5)

pIC50 ) 3.762 + 0.296 × 〈-10.203 - Einteract〉 +
0.089 × 〈26.855 - Einside〉 (6)
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(d) AChE Data Set. Recently Cho et al. have
reported a 3D QSAR study for the 60 structurally
diverse AChE inhibitors using the CoMFA method.25
The structures were aligned using the geometry estab-
lished by a few homogeneous ligands whose X-ray
structures with AChE were known. They demonstrated
that the quality of the CoMFA model could be substan-
tially improved by making appropriate region selections
using a newly developed q2-GRS routine.25,41,42 They
reported a seven-component PLS model with a cross-
validated r2 of 0.73 and concluded that the steric field
was the major contributor of the PLS regression (Table
2d). The aligned coordinates of the AChE inhibitors
used in the current work were kindly provided by Cho
et al.
The principal role of the steric field was also apparent

in the similarity approach. Applying GNN on the shape
matrix alone resulted in a very good QSAR that had
predictive statistics (q2 ) 0.81) already exceeding the

CoMFA/q2-GRS work. The electrostatic counterpart,
used by itself, yielded a much worse correlation (q2 )
0.57). Combining the shape and electrostatic informa-
tion did not improve the model predictivity in this case
(q2 ) 0.80; Figure 1d); in fact, all nine GNN descriptors
chosen from the combined matrix were shape similarity
descriptors. This suggested that the electrostatic in-
formation only added noise to the input matrix, and
subsequently the effectiveness of the genetic search was
slightly impaired.
(e) Bisamidine Data Set. Montanari et al. reported

a number of linear regression (LR) equations which
correlated the potency of 37 bisamidine analogues
against Leishmania.26 Their initial equation involved
six indicator variables and two physicochemical proper-
ties and yielded a q2 value of 0.63 (LR I in Table 2e).
Later, they explored the possibility of replacing the
indicator variables by topological or similarity descrip-
tors. The three descriptors in their final model were
log P, an electrotopological state index, and a Carbó
similarity index using the least active compound (4) as
the reference structure. The similarity index had equal
contribution from shape and electrostatic attributes,
though further studies suggested that shape was the
more important component. The final regression model
yielded a q2 value of 0.51 (LR II in Table 2e).
The set of prealigned coordinates of bisamidines,

which attained an isohelical conformation that was
believed to be the bioactive form,43,44 was kindly pro-
vided by Montanari et al. The dominance of shape
factor was confirmed by the GNN analysis, where the
predictivity of the shape model exceeds that of the
electrostatic by over 0.2 q2 unit. As with the previous
AChE study, GNN on the combined matrix yielded a
shape-only model (q2 ) 0.80; Figure 1e) that had no
improvement in performance over the GNN model
derived from the shape matrix.
(f) GP Data Set. We examined a set of 30 R-D-

glucose derivatives whose cocrystallized structures with
GP had been determined by Johnson et al. This set
included some highly potent inhibitors that were dis-
covered recently.45,46 We took advantage of the X-ray
alignment since the bioactive conformations for these
ligands were known.
The optimal GNN QSARs from the electrostatic and

shape similarity matrices were both six-descriptor
models, and they yielded q2 values of 0.72 and 0.81,
respectively. Application of the GNN algorithm on the
combined matrix yielded a simpler five-descriptor model
that gave a q2 value of 0.82 (Figure 1f). The three new
potent compounds (23, 26, and 30) fit well in the current
model. Their removals from the GNN analysis in fact
made the resulting model marginally less predictive (q2
) 0.79).
The predictivity of the SM/GNN QSAR was compa-

rable to the models obtained in previous 3D QSAR
studies4,12 on different sets of glucose analogues. Using
the GRID47 force field and the GOLPE48 selection on

Table 2. Statistical Data for Series a-ha

combine electrostatic shape

(a) Ah
CoMFA18 0.72 (6) 0.66 (8) 0.72 (9)
AV/NN19 0.83 (12)
SM/GNN 0.85 (7) 0.72 (7) 0.85 (6)

(b) DâH Inhibitors
MSA20 0.76 (6)
RSM21 0.79 (2)
SM/GNN 0.77 (4) 0.65 (4) 0.76 (6)

(c) BzR Inverse Agonists
CoMFA22 0.59 (4) 16% 84%
CoMFA23 0.65 (4) 11% 89%
CoMFA/GOLPE23 0.82 (5) 48% 52%
CoMFA24 0.67 (4)b 13% 87%
SM/PLS15 0.69 (4) 0.59 (5) 0.60 (3)
SM-GOLPE/PLS15 0.72 (3)
CoMMA17 0.39 (2)
SM/GNN 0.73 (4) 0.61 (5) 0.71 (7)

(d) AChE Inhibitors
CoMFA25 0.62 (3) 23% 77%
CoMFA/q2-GRS25 0.73 (7) 33% 67%
SM/GNN 0.80 (9) 0.57 (3) 0.81 (9)

(e) Bisamidines
LR I26 0.63 (8)
LR II26 0.51 (3)
SM/GNN 0.80 (6) 0.60 (6) 0.81 (7)

(f) GP Inhibitors
SM/GNN 0.82 (5) 0.72 (6) 0.81 (6)

(g) Benzoic Acids
LR13 0.91 (1)c
CoMFA16 0.89 (6)
DM/PLS16 0.90 (8)
HSM/PLS16 0.75 (2)
CSM/PLS16 0.75 (2)
CoMMA17 0.69 (13)
SM/GNN 0.83 (4) 0.34 (4)

(h) Imidazolesd
SM/PLS15 0.63 (3)
SM-GOLPE/PLS15 0.77 (3)
CoMMA17 0.70 (2)
SM/GNN 0.92 (3) 0.21 (3)
a This shows the q2 and the associated number of descriptors

(i.e., terms or components in linear or PLS regressions, number
of descriptors in GNN; shown in parentheses) used in the correla-
tion. For some CoMFA studies, the relative contributions of the
electrostatic and steric fields in the PLS are also listed (in
percentages). b Kroemer et al. have reported many CoMFAmodels
using different charge types and cutoff schemes. The result shown
in the table corresponds to the predictivity of a system closest to
the one used in the electrostatic similarity calculations (C1bn in
Table VIII of Kroemer et al.).

Table 3. Activity Predictions for the Six Additional Inverse
Agonists of BzR Using the GNN QSAR Derived from the
Combined Similarity Matrix

pIC50 38 39 40 41 42 43

experimental 6.3 7.0 6.3 7.0 6.0 6.5
predicted 6.8 6.8 6.7 6.8 6.3 6.7
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the field values, the researchers had reported PLS
models with values of q2 ranging from 0.76 to 0.81.
Prediction of Physicochemical Parameters. (g)

Hammett Constants of Substituted Benzoic Acids.
The Hammett constant (σ) is one of the most common
electrostatic parameters in traditional 2D QSAR. It is
derived from the ionization constants of substituted
benzoic acids and reflects the inherent polar effect of a
given substituent relative to hydrogen.49 Numerous
compilations of the Hammett constants are available
for a large variety of substituents.50

In an earlier analysis of a series of 27 benzoic acids,
Sotomatsu et al. observed that σ was linearly correlated
with the sum of partial atomic charges of the two oxygen
atoms and the hydrogen atoms of the carboxylic group.51
Kim and Martin extended this work with 49 meta- or
para-substituted benzoic acids.13 Because they did not
report the q2 value of the model, we reanalyzed the
equation based on the published partial atomic charges.
The one-descriptor LR was highly predictive and yielded
a q2 value of 0.91. This work was followed by a number
of structure-properties studies, all of which involved
PLS analyses on matrices that were derived from
electrostatic field13,15,16 or molecular moments (CoMMA;
q2 ) 0.69).17 Here, we cite the set of results reported
by Martin et al., who have performed PLS on the field
values (CoMFA) and two types of similarity matrices
(SM/PLS) as well as a distance matrix (DM/PLS).16
Their six-component CoMFA model yielded a q2 value
of 0.89. Performing PLS on either the Hodgkin (HSM)
or the Carbó (CSM) similarity matrices both led to a
two-component model with a q2 value 0.75, though with
a distance matrix a very predictive eight-component
model was obtained (q2 ) 0.90).
The GNNmethod was applied to the electrostatic and

shape similarity matrices for the 49 benzoic acids (1-
49). The fact that σ predominantly conveys electrostatic
information was clearly reflected by the much better
correlation obtained from the electrostatic matrix (q2 )
0.83) relative to the shape matrix (q2 ) 0.34). A further
test for the predictive ability of the electrostatic QSAR
was to predict σ of some analogues that were not used
in model construction (50-72). Most of the predicted
σ values for 23 additional substituted benzoic acids were
very accurate; two of the largest prediction errors came
from the test compounds that had substantially lower
σ values than any example in the training set (Figure
1g). The rms error and the correlation coefficient (r2)
for the test set predictions were 0.19 and 0.81, respec-
tively.
On an absolute scale, the cross-validated statistics

and the test set predictions provided by the electrostatic
SM/GNNmodel were very good. On relative terms, the
present result was superior to the CoMMA and SM/PLS
benchmarks but was inferior to the LR, CoMFA, and
DM/PLSmodels. The significant improvement achieved
by the use of a distance-based matrix along with the
possibility of a better DM/GNN QSAR was intriguing,
though more studies are needed to determine whether
such improvement is general or specific to this data set.
(h) pKa of Imidazoles. The GNN method was

employed for the prediction of the pKa values of 16
imidazoles. The QSAR based on the shape similarity
matrix gave a very weak correlation (q2 ) 0.21), whereas
the electrostatic matrix yielded an excellent result (q2

) 0.92; Figure 1h). The electrostatic model was sub-
stantially superior to the corresponding SM/PLS models
(with or without GOLPE field selection) and the
CoMMA results.

IV. Conclusion

The biological activities of six molecular series and
the physicochemical properties of two molecular series
have been correlated using the new SM/GNN approach.
The predictive statistics of GNNmodels from individual
shape or electrostatic SMs provide a qualitative mea-
sure of the relative importance of the two effects. A
composite GNNmodel that incorporates both properties,
which is sometimes necessary for optimal predictivity,
can be obtained from the combined similarity matrix.
The major results of this study are summarized in Table
4. The cross-validated statistics and test set predictions
of the QSAR models are generally very good. The q2
values range from 0.73 to 0.85 for the seven larger data
sets and exceed 0.90 for the imidazoles. Their signifi-
cance is validated by a standard randomization test,52
which suggests that the results are unlikely to be a
chance correlation.53 Moreover, most of the SM/GNN
results compare favorably with the benchmarks ob-
tained by the state-of-the-art QSAR methods. The
consistency in performance is very encouraging given
the great structural variety in the different data sets.
This demonstrates the usefulness of similarity as a
descriptor and the robust nature of GNN as a correlation
tool.
The gain in predictivity obtained by replacing PLS

with GNN for the analysis of SM comes at a higher
computational cost, though the SM/GNN calculations
are not expensive by current standards. The generation
of the field and similarity matrices for a data set
containing, say, 50 drug-size (i.e., 20-40 atoms) mol-
ecules typically takes a few minutes on a modest
workstation (e.g., 175-MHz R4400 Silicon Graphics
Indigo2). A GNN simulation on the resulting matrix
requires approximately 1-2 CPU hours. Furthermore,
once the model has been constructed, activity predic-
tions of new analogues can be made very rapidly with
a trained neural network. This fast processing time
makes it particularly suitable for screening a large
number of potential drug candidates that may be
obtained from structure-based design methods, database
searches, or combinatorial libraries. This aspect of
application is an impetus for the development of this
method.

Table 4. Significant Results for the Eight Data Setsa

data set N n r2 q2
randomization

test q2

(a) Ah 73 7 0.89 0.85 0.14 ( 0.07
(b) DâH 47 4 0.80 0.77 0.14 ( 0.12
(c) BzR 37 4 0.83 0.73 0.17 ( 0.10
(d) AChE 60 9 0.86 0.80 0.16 ( 0.10
(e) bisamidines 37 6 0.86 0.80 0.33 ( 0.11
(f) GP 30 5 0.90 0.82 0.31 ( 0.20
(g) benzoic acids 49 4 0.88 0.83 0.04 ( 0.09
(h) imidazoles 16 3 0.96 0.92 -0.26 ( 0.33
a N is the number of training compounds, n is the number of

GNN descriptors in the model, r2 is the Pearson correlation
coefficient for the training set, and q2 is the correlation coefficient
for the cross-validated predictions. The q2 values for the random-
ization test are derived from 20 multiple runs using data sets with
differently scrambled output.
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A very useful feature of CoMFA is the depiction of
the important regions where molecular interactions may
take place. This is possible because CoMFA used linear
combinations of field values as descriptors and their
spatial reference to the molecule remains intact. This
is not the case for similarity-based descriptors because
the spatial reference of the field is destroyed when the
similarity index is calculated. In this regard, a region
selection regime that is similar to the CoMFA/q2-GRS
routine may be useful. In the procedure, the full grid
is initially divided into a number of subgrids that may
contain parts of the molecules. The GNN method is
applied to each of the SMs derived from individual
subgrids. The important molecular regions are identi-
fied by the locations of the subgrids that can generate
good SM/GNNmodels. By providing a focus for possible
structural modifications, the drug optimization process
may be expedited.
Finally, the current method is no exception to the fact

that molecular alignment is an inherent, and often
critical, element of many 3D QSAR methods. Two
methodological extensions have been considered to
improve this aspect of the problem. The first involves
a GA-based alignment technique that is used in con-
junction with molecular similarity. Preliminary work
suggests that significant improvements in predictivity
can be obtained with alternative alignments.54 The
second concerns some novel similarity indices that are
derived from spatially invariant properties rather than
standard molecular fields. For example, one can obtain
a similarity measure based on the elements of the
autocorrelation vectors proposed by Wagener et al. or
the molecular moments descriptors used in CoMMA.
This new variant of SM/GNN does not require molecular
superposition; the approach will be addressed more
thoroughly in future investigations.
The results of this study suggest that the SM/GNN

method is a general, efficient, and robust approach to
obtain 3D QSAR with good correlative and predictive
statistics for a variety of chemical classes and properties.
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